Studies: Climate change is bringing more powerful storms and flooding

Extreme downpours caught people off guard from Las Vegas to Kentucky in July 2022.

By

/

/

4 minute read

In July 2016, an extreme rainstorm caused the Totogatic River, a tributary to the Namekagon, which flows into the St. Croix, to breach the Colton Flowage dam. (Photo by Joyce Palucci)

Powerful storm systems triggered flash flooding across the U.S. in late July, killing more than three dozen people in eastern Kentucky as floodwater engulfed homes and set off mudslides. Record rainfall also inundated St. Louis neighborhoods, and another deluge in Nevada flooded the Las Vegas strip.

The impact of climate change on extreme water-related events like this is becoming increasingly evident. The storms in the U.S. followed extreme flooding this summer in India and Australia and last year in Western Europe.

Studies by scientists around the world show that the water cycle has been intensifying and will continue to intensify as the planet warms. An international climate assessment I coauthored in 2021 for the Intergovernmental Panel on Climate Change lays out the details.

It documented an increase in both wet extremes, including more intense rainfall over most regions, and dry extremes, including drying in the Mediterranean, southwestern Australia, southwestern South America, South Africa and western North America. It also shows that both wet and dry extremes will continue to increase with future warming.

Why is the water cycle intensifying?

Water cycles through the environment, moving between the atmosphere, ocean, land and reservoirs of frozen water. It might fall as rain or snow, seep into the ground, run into a waterway, join the ocean, freeze or evaporate back into the atmosphere. Plants also take up water from the ground and release it through transpiration from their leaves. In recent decades, there has been an overall increase in the rates of precipitation and evaporation.

A number of factors are intensifying the water cycle, but one of the most important is that warming temperatures raise the upper limit on the amount of moisture in the air. That increases the potential for more rain.

Extreme storms get wetter as temperatures rise

As global temperatures rise, the intensity of storms increases, a new IPCC report shows. The projections show how much wetter storms that historically occurred once every 10 years are likely to become at temperatures 1.5°C or more above the late 19th century average.

Compared to the 1850-1900 average. 1° Celsius increase = 1.8° Fahrenheit increase.
Chart: The Conversation/CC-BY-ND Source: IPCC Sixth Assessment Report

This aspect of climate change is confirmed across all of our lines of evidence discussed in the IPCC report. It is expected from basic physics, projected by computer models, and it already shows up in the observational data as a general increase of rainfall intensity with warming temperatures.

Understanding this and other changes in the water cycle is important for more than preparing for disasters. Water is an essential resource for all ecosystems and human societies, and particularly agriculture.

What does this mean for the future?

An intensifying water cycle means that both wet and dry extremes and the general variability of the water cycle will increase, although not uniformly around the globe.

Rainfall intensity is expected to increase for most land areas, but the largest increases in dryness are expected in the Mediterranean, southwestern South America and western North America.

Annual average precipitation is projected to increase in many areas as the planet warms, particularly in the higher latitudes. IPCC Sixth Assessment Report

Globally, daily extreme precipitation events will likely intensify by about 7% for every 1 degree Celsius (1.8 degrees Fahrenheit) that global temperatures rise.

Many other important aspects of the water cycle will also change in addition to extremes as global temperatures increase, the report shows, including reductions in mountain glaciers, decreasing duration of seasonal snow cover, earlier snowmelt and contrasting changes in monsoon rains across different regions, which will impact the water resources of billions of people.

What can be done?

One common theme across these aspects of the water cycle is that higher greenhouse gas emissions lead to bigger impacts.

The IPCC does not make policy recommendations. Instead, it provides the scientific information needed to carefully evaluate policy choices. The results show what the implications of different choices are likely to be.

One thing the scientific evidence in the report clearly tells world leaders is that limiting global warming to the Paris Agreement target of 1.5 C (2.7 F) will require immediate, rapid and large-scale reductions in greenhouse gas emissions.

Regardless of any specific target, it is clear that the severity of climate change impacts are closely linked to greenhouse gas emissions: Reducing emissions will reduce impacts. Every fraction of a degree matters.

Disclosure statement

Mathew Barlow received travel funding from the US government to attend three IPCC lead author meetings.


Comments

St. Croix 360 offers commenting to support productive discussion. We don’t allow name-calling, personal attacks, or misinformation. This discussion may be heavily moderated and we reserve the right to block nonconstructive comments. Please: Be kind, give others the benefit of the doubt, read the article closely, check your assumptions, and stay curious. Thank you!

“Opinion is really the lowest form of human knowledge. It requires no accountability, no understanding. The highest form of knowledge is empathy, for it requires us to suspend our egos and live in another’s world.” – Bill Bullard

One response to “Studies: Climate change is bringing more powerful storms and flooding”

  1. Mark Hove Avatar
    Mark Hove

    Thank you for the thoughtful article!